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Abstract. We employ Laplace and Fourier transforms in momentum space to find the bound
states of the 1D Schrödinger equations with two different potentials; 1/x and 1/|x|.

By performing inverse transforms we show that for the potential 1/|x| the solutions in real
space reduce to those of the 1D hydrogen atom with eigenenergies proportional to 1/n2 with
n integer. Analogously, we find that for the potential 1/x the eigenenergies are proportional to
1/(n + 1

2)
2 and the eigenfunctions can be expressed in terms of fractional derivatives. Taking into

account that both potentials are singular (the 1/x potential is analytical and the 1/|x| potential is
not), we analyse the nature of their bound states.

1. Introduction

The stationary states of the one-dimensional (1D) Schrödinger equation with a 1/|x| potential
describing the 1D hydrogen atom (1D H atom) have attracted a great deal of interest [1–6]. This
equation is related to the exciton problem in the study of high temperature superconductors [7],
semiconductor quantum wires† [8–11], polymers [12, 13], and also due to the existence of
image forces on 1D electron gas at the helium surface, to the Wigner crystal [14, 15]. In
contrast to ther-dependence of the 3D H atom eigenstates, the 1D H atom states have parity
since the eigenfunctions are also defined for negative values of the argumentx. In fact, besides
a factorr, the 3D H atom states are equal to those of the s-states (l = 0) of the 1D H atom for
positivex. Flugge and Marschall [1] concluded that only the odd states were bound solutions of
the 1D H atom, while Loudon [2] claimed that the even states were solutions as well (including
a ground state with infinite binding energy), being degenerate with the odd states. Andrews [3]
objected to the existence of Loudon’s ‘ground state’ and Xianxiet al [5] claimed (apparently
with conclusive arguments) that only eigenstates with even parity exist. The latter authors
pointed out, in connection with Loudon’s ground state, that for some systems singular states
have to be taken into account, such as the famous H atom ground state of the Dirac equation.
Besides confirming a discrete negative-energy spectrum corresponding to odd-parity solutions,
Heines and Roberts [16] discovered a continuous spectrum of even states that is unbounded
from below, which Andrews [17] correctly observed does not form an orthogonal set (that is,
it is not rectifiable using the Schmidt orthogonalization procedure). An excellent and detailed
account of the 1D H atom is found in [5,18].

A related 1D Schr̈odinger equation with a Coulomb-type 1/x potential, seems not to have
been investigated before. However, this potential could be used to describe asymmetric wells in
1D systems. For example, since in a semiconductor or insulator 1/εx is the screened potential

† For experimental and theoretical reviews on quantum wire systems see [8].
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and the dielectric functionε can be negative for some frequencies, then we could think of an
impurity at the boundary of two 1D systems characterized by dielectric functionsε1 andε2

whereε1 = − ε2. As will be shown here later, both potentials 1/x and 1/|x| will be treated in
a similar mathematical fashion.

The outline of the paper is the following. In order to gain insight on the nature of the
less known 1D 1/x potential we solve this problem both classically and semiclassically in
section 2. In section 3 we solve the 1D Schrödinger equations with potentials 1/x and 1/|x| in
momentum space to obtain in a very simple way both their eigenenergies and eigenfunctions.
This procedure seems to be simpler than Frobenius series methods [5] or generalized Laplace
transforms involving generalized functions [18] to solve the 1D H atom. Section 4 is devoted to
find the wavefunctions in real space by performing the inverse transforms. Finally, in section 5
we explore the continuum-spectrum solutions of the 1/x potential and we summarize our
results.

2. Classical and semiclassical analysis

Here we shall briefly analyse the classical and semiclassical behaviour of the 1D 1/x potential,
together with the results of the 1D potential 1/|x| of Gordeyevet al [18]. First, we should
mention that in contrast to 1/|x| (e.g.x = 0 is not just a pole), the 1D 1/x potential is an
analytical function ofx and thus its associated force does not contain any generalized function
as it does for 1/|x|. For bounded trajectories we set the total energyE to be negative and
(E = −|E|);

−|E| = m

2

(
dx

dt

)2

− Ze
2

x

hence

dx

dt
= ±

√
2

m

(
Ze2

x
− |E|

)
.

Classical motion is only allowed from the origin to the turning point where dx/dt = 0, that
is, in the range 0< x < Ze2/|E|, which implies that motion for this potential is exactly the
same as the corresponding 3D Kepler problem with null angular momentum. A parametric
description of this movement is usually expressed in terms of the function

x(ξ) = 2a sin2(ξ/2)

wherea = Ze2/2|E| andξ is given byωt = ξ − sinξ with ω =
√
Ze2/ma2. The explicit

time dependent expression for the solution is found by expandingx(ξ) in Fourier series and is
given by [19]

x(t) = 2a

(
−3

4
+
∞∑
n=1

J ′n(n)
cos(nωt)

n

)
whereJ ′n(x) is the derivative of the Bessel function of ordern. The features of this motion are
those of the 3D Kepler system, namely the amplitude of oscillation and the period of motion
are the same. Analogously to trajectories in the 1D 1/|x| potential [18],x(t) in our case is
continuous but in contrast, it is not differentiable at the origin even in the case of treating it as
a generalized function; as is the case for the trajectory in the 1/|x| potential [18]. This can be
seen by noting that dx/dt → ±∞ asx+ → 0, where the negative infinite symbol describes
the particle speed when it reaches the origin and the positive one when it leaves this point.
This change of momentum is provided to the system by the classically impenetrable barrier at
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the origin. This divergence in the particle speed obviously suggests that this classical problem
should be solved relativistically.

The semiclassical analysis for the 1/x potential can be performed by using the well known
Bohr–Sommerfeld quantization condition

2πn =
∮
p dx/h̄ = 2

∫ ζr

0

√
1− γ /ζ dζ (1)

whereγ = −(Ze2/h̄E)
√−2m/E, ζ = √−2mEx/h̄ and the return pointζr = −Ze2/E > 0.

This yields the following energy levels

En = −mZ
2e4

2h̄2n2
(2)

which coincidentally are those of the 3D H system. However, this treatment is not correct
since the WKB approximation, on which equation (1) is based, does not apply near the origin
because dλ/dx |x→0 = d(h̄/p)/dx |x→0 ∼ x−1/2 is not small, but tends to infinity asx → 0
(λ is the de Broglie wavelength). Thus, the well known WKB solution in a potential well

ψ = 1√
p
C sin

[
(1/h̄)

∫ xr

x

p dx + π/4

]
x < xr (3)

wherep = (2mZe2/x − 2m|E|)1/2, only represents those pointsx which are not near the
origin. HereC is a constant to be determined.

In the vicinity of the origin the correct approach is to approximate the Schrödinger
equation (9) by

d2ψ

dζ 2
+
γ

ζ
ψ = 0 (4)

when 1� |γ /ζ | which is valid near the origin. It is straightforward to show that the general
solution of this equation is given by

ψ =
{
A1

√
ζJ1(2

√
γ ζ ) +A2

√
ζN1(2

√
γ ζ ) ζ > 0

−A1

√
ζ I1(2

√
γ ζ )− A2

√
ζK1(2

√
γ ζ ) ζ < 0

(5)

whereJ1(x), N1(x), I1(x) andK1(x) are the Bessel, Neumann and modified Bessel and
Neumann functions of order one, respectively. A reasonable physical requirement is to ask
ψ in equation (5) to vanish whenζ → −∞, because classically there is not a particle for
ζ < 0, henceA1 = 0. The semiclassical expression equation (3) is to be compared with the
asymptotic form of equation (5) for the positive region, that is to say, for large values of its
argument. On the one hand, equation (5) reduces to

ψ = A2ζ
1/4 cos(2

√
γ ζ − π/4) ζ � 1. (6)

On the other hand, using the following approximation near the origin∫ xr

x

p dx ≈
∫ xr

0
p dx −

∫ x

0

√
2mZe2/x dx

we can rewrite equation (3) as

ψ ≈ −Cx1/4 sin

[
2
√
γ ζ − πmZe2

h̄
√−2mE

− π/4
]

x < xr . (7)

Finally, equations (6) and (7) describe the same wavefunction only if

En = − mZ2e4

2h̄2(n + 1/2)2
(8)
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andC = −A2 which is different from equation (2) and which just coincides for the higher
levels where the WKB analysis is valid. Thus, surprisingly, WKB results given by equation (8)
provide the exact result for the 1D 1/x potential as will be shown in the next section. That is,
the WKB approach yields the exact eigenenergy results for both 3D H atom and for the 1/x

potential.
Incidentally, for the 1D 1/|x| potential an antisymmetric function was constructed with

the values of equation (5) for positiveζ by Gordeyev and Chhajlany [18] withA2 = 0. By
ignoring the Neumann function

√
ζN1(2

√
γ ζ ) they did not include even solutions of the type

found by Heines and Roberts [16], and therefore the negative energy continuum spectrum
solutions [16] were lost.

We close this section by emphasizing that our treatment, which is beyond the usual
semiclassical WKB one, predicts that a particle confined to the right-hand side of the 1/x

potential can trespass the potential barrier at the origin since for negative values ofx there
exists an evanescent wavefunction given byA2

√
ζN1(2

√
γ ζ ) . This is understandable since

for x− → 0 the barrier becomes infinite but its thickness decreases, analogously to Dirac’s
delta potential.

3. Momentum space equation

The 1D Schr̈odinger equations with attractive Coulomb-like potentials−Ze2/x and−Ze2/|x|
to be considered here are given by

d2ψj

dζ 2
+

(
γ

fj (ζ )
− 1

)
ψj = 0 (9)

whereγ = −(Ze2/h̄E)
√−2m/E, ζ = √−2mEx/h̄, j = 1, 2 andf1(ζ ) = ζ , f2(ζ ) = |ζ |.

Herem ande are the mass and electric charge of the electron andZ is a positive integer. We
restrict our work to consider just the bound states associated to these equations for which their
corresponding wavefunctions are quadratic integrable in the whole space. For such states the
Fourier transform is well defined, and thus we can take the Fourier transform of equation (9)
to obtain

−(p̄2 + 1)φj (p̄) + γ
∫ ∞
−∞

rj (p̄ − p̄′)φj (p̄′) dp̄′ = 0 (10)

where we have used the convolution theorem. Hererj (p̄) is the Fourier transform of 1/fj (ζ )
andφj (p̄) is the wavefunction in momentum space that is given by

φj (p̄) = 1

2π

∫ ∞
−∞

dζ ψj (ζ )e
−ip̄ζ . (11)

If we consider firstf1(ζ ) = ζ , then we haver1(p̄) = −(i/2)sign(p̄) [20] where sign(p̄) = 1
for p̄ > 0 and sign(p̄) = −1 for p̄ < 0, and hence equation (10) can be written as

−(p2 + 1)
dG1

dp̄
− iγ

2
(2G1(p̄)−G1(∞)−G1(−∞)) = 0

where we have introducedG1(p) =
∫ p

0 φ1(p̄
′) dp̄′. The general solution of this equation is

given by

G1(p̄) = G1(∞) +G1(−∞)
2

− A1e−iγ arctanp̄ (12)

whereA1 is an arbitrary constant to be determined from the normalization condition. If we
evaluate equation (12) in∞ and−∞, we arrive toG1(∞) − G1(−∞) = 2A1eiγπ/2 =
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−2A1e−iγπ/2, which allow us to determine that the eigenenergies of the system are given by
E1,n = −mZ2e4/(2h̄2(n + 1

2)
2) with n an integer. That is, summarizing

φ1,n(p̄) = dG1,n

dp̄
= i(2n + 1)A1

e−i(2n+1) arctanp̄

p̄2 + 1
. (13)

It is important to emphasize that our straightforward procedure to solve the 1D 1/x

potential automatically provides the quantization condition. However, on usingG1(p̄) we
impliticitly introduce an additional restriction on the solutions which consists in requiring
G1(∞) − G1(−∞) =

∫∞
−∞ dp̄ φ1(p̄) to exist; which is a stronger condition than the usual

quadratic integrable condition. We shall conduct further analysis in section 5 to verify that the
full spectrum has been identified.

For the 1/|x| potential the form ofφ2(p̄) is expected to be similar toφ1(p̄) but we cannot
use equation (10) becauser2(p̄) = 1

2π

∫∞
−∞ dζe−ip̄ζ /|ζ | is divergent. This fact makes the

integral transform procedure less direct, since as will be shown, we will have to match the
Laplace transform wavefunction at the origin according to the parity. The Laplace transform
L of equation (9) for both the positive and negative part of the real axis, defined by

φ2(s) = L[ψ2(x)] =
∫ ∞

0
dx ψ2(x)e

−sx (14)

can be employed due to the property [20]L[ψ2(x)/x] = ∫∞
p̄
φ2(s) ds which is valid when

limx−>0ψ2(x)/x is well defined. Heres is understood ass = ip̄. Taking the Laplace transform
of equation (9) yields

(p̄2 + 1)
dG2

dp̄
+ γ (G2(p)−G2(∞))− dψ

dζ
(0+) = 0 (15)

whereG2(p̄) = i
∫ p̄

0 φ2(is ′) ds ′ and dψ (0+)/dζ is the right-hand side limit ofψ(ζ ) at ζ = 0.
By solving this equation forG2(p̄) and rewriting the resulting expression in terms ofp̄, we
arrive at

G2(p̄)−G2(∞) + i
dψ

dζ
(0+) = −A2e−iγ arctanp̄ p̄ > 0 (16)

whereA2 is an arbitrary constant to be determined by normalization. Using the same procedure
but for the negative part of the real axis, we obtain

G2(p̄)−G2(−∞) + i
dψ

dζ
(0−) = −A2e−iγ arctanp̄ p̄ < 0. (17)

Since 1/f2(ζ ) is an even potential there must be even and odd eigenfunctions in the system. For
even functionsψ(ζ ) we have dψ (ζ )/dζ = −dψ (−ζ )/dζ andG2(p̄) = −G2(−p̄). Thus,
adding equations (16) and (17) yields

G2(p̄) = −A2e−iγ arctanp̄ any p̄. (18)

Note that in this case there is no restriction on the value ofγ meaning that even
eigenfunctions which have a continuum spectrum are exactly the same type of solutions found
by Heines and Roberts [16]. However, as mentioned in the introduction, it has been proved
that these solutions are not mutually orthogonal and are not rectifiable by using the Schmidt
method [17].

On the other hand, since for odd eigenfunctions dψ (ζ )/dζ = dψ (−ζ )/dζ , evaluation of
equations (16) and (17) at∞ and−∞, respectively, allows us to writeA2eiγπ/2 = A2e−iγπ/2,
which yields the eigenenergy spectrum;E2,n = −mZ2e4/(2h̄2n2) with n an integer. This is
exactly the same result obtained by Loudon [2] and Flugge and Marschall [1] for the 1D H
atom by using a series expansion in the real space. Also, both 1D H atom eigenenergies and
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eigenfunctions were found in [18] by employing a cumbersome generalized Laplace transform
which leads to the use of generalized functions such as Dirac’s delta function. Analogously to
equation (13), we have that

φ2,n(p̄) = dG2,n

dp̄
= 2inA2

e−2in arctanp̄

p̄2 + 1
. (19)

The corresponding probability densities associated to eachn-eigenfunction can be
calculated fromPj,n(p̄) = |dGj,n/dp̄|2 yielding Pj,n(p̄) = A′2j,n/(1 + p̄2)2. Notice that
for a givenn, Pj,n(p̄) has the same analytical form than that of the only bound state of an
attractive delta potential, namely, we could adjust the strength of the delta potential in such
way that we could reproducePj,n(p̄) for anyn.

4. Wavefunctions in real space

Due to the fact that the only difference betweenG1(p̄) andG2(p̄) are additive constants,
the value ofγn andfj (ζ ), we can manipulate them simultaneously to get the inverse Fourier
transform of dGj,n/dp̄, i = 1, 2 in order to obtain the eigenfunctions in real spaceψj,n(x):

ψj,n(ζ ) = −(A′j,nζ )
∫ ∞
−∞

dp̄ e−iγn arctanp̄eip̄fj (ζ ). (20)

Next, using the identity arctan(u) = −(i/2) ln[(1 + iu)/(1− iu)], equation (20) turns out to be

ψj,n(ζ ) = −A′j,n(−1)γn/2ζ
∫ ∞
−∞

dp̄

(
ip̄ − 1

ip̄ + 1

)γn/2
eip̄fj (ζ ) (21)

and if we introduce the dimensionless complex variablez = (ip̄ + 1)/(ip̄ − 1), equation (21)
can be expressed as the contour integral in the complex unit circle|z| < 1 given by

ψj,n(x) = −iA′j,nζe−fj (ζ )
∮
C

dz
e−2fj (ζ )z/(1−z)

zγn/2(1− z)2 . (22)

For the 1D H atom case (j = 2) for which γn = 2n and f2(ζ ) = |ζ |, the contour
integral in equation (22) is nothing but the complex representation of the associated Laguerre
polynomials [21] 2πL1

n−1(|ζ |), that is

ψ2,n(ζ ) = 2πA′2,nζe−|ζ |L1
n−1(2|ζ |) (23)

which is the same result found by Flugge and Marschall [1] so these eigenfunctions are just
the odd ones in agreement with Xianxiet al [5].

For the 1/x potential(j = 1) for whichγn = 2n+1, it is convenient to rewrite the contour
integral of equation (22) in terms of the variables − ζ = ζz/(1− z) to obtain

e2ζ

2π i

∮
C

ds
sn+3/2e−2s

(s − ζ )n+3/2
= e2ζ ζ−1

0(n + 3/2)

dn+1/2

dζ n+1/2
(ζ n+3/2e−2ζ ) (24)

where we have used the Osler–Nekrassov definition for the fractional derivative [22],0(n)

being theγ -function. To expand equation (24) we use the Leibniz rule generalization

dq [fg]

dζ q
=
∞∑
k=0

(
q

k

)
dq−kf
dζ q−k

dkg

dζ k
(25)

valid for arbitrary value ofq, and the formulae [23]:

dn+1/2−kζ n+3/2

dζ n+1/2−k = 0(n + 5/2)

0(k + 2)
ζ k+1 (26)

dke−2ζ

dxk
= e−2ζ

ζ k
γ ∗(−k,−2ζ ) (27)
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whereγ ∗(c, ζ ) is the incompleteγ -function defined by [21]

γ ∗(c, ζ ) = ζ−c

0(c)

∫ ζ

0
t c−1e−t dt. (28)

Substitution of the above expressions into equation (24) allows us to writeψ1,n(ζ ) as

ψ1,n(ζ ) = 2π
A′1,nζe−2ζ

0(n + 3
2)

∞∑
k=0

(
n + 1

2

k

)
0(n + 5

2)

0(k + 2)
γ ∗(−k,−2ζ ). (29)

5. Continuum-spectrum solutions

In the same spirit of study [18] on the 1D H atom, we perform an additional analysis of the
1/x potential in order to discern the possibility of having continuous spectrum solutions. In
constrast to section 3 where we used a simpler integral transfer method but restricted ourselves
to the condition that

∫ d
C

dp̄ φ1(p̄) exist, in this section we use a less restrictive procedure which
only requires the usual quadratic integrable condition. To this aim we substitute the expression
ψ1(ζ ) =

∫∞
−∞ φ(p̄) dp̄ eip̄ζ into equation (9) withj = 2 to find∫

C

dp̄

(
γ

ζ
− p̄2 − 1

)
φ(p̄)eip̄ζ = 0

which is an equivalent integral representation of the Schrödinger equation. HereC is the
integration contourn. Now, using the identity d(eip̄ζ /ζ )/dp̄ = ieip̄ζ for rewriting the second
and third terms of this equation, yields

γ

ζ

∫
C

dp̄ φ(p̄)eip̄ζ + i
∫
C

dp̄ (p̄2 + 1)φ(p̄)
d

dζ

[
eip̄ζ

ζ

]
= 0.

Integration of second term of this equation by parts leads to the expression

1

ζ

∫
C

dp̄

(
γφ(p̄)− i

d

dζ
[(p̄2 + 1)φ(p̄)]

)
eip̄ζ = 0 (30)

provided

1

ζ
1C [(p̄2 + 1)φ(p̄)eip̄ζ ] = 0 (31)

where1C denotes the change in the value of the function between brackets in going from
one end of the contourn to the other. To fulfill equation (30) we take forφ(p̄) the general
solution of the differential equation obtained by making the brackets in equation (30) equal
to zero. Then, substitution of the resulting solution in the inverse Fourier transform and in
equation (31) yields

ψ1(ζ ) = A′2
∫
C

e−iγ arctanp̄

p̄2 + 1
eip̄ζ dp̄ (32)

1

ζ
1C

[(
ip̄ − 1

ip̄ + 1

)γ /2
eip̄ζ

]
= 0 (33)

whereA′2 is an integration constant. The contournC must be chosen to satisfy equation (33).
If ζ 6= 0 the possible contourn starts at infinity, surrounds the branch pointp̄ = i and return to
infinity so that the exponential vanishes on the positive part of the imaginary axis. Integration
of equation (32) following this contourn leads to Whittaker functions [24] for which the value
of γ is not restricted, so that the spectrum is continuous.
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However, for ζ = 0 this contourn does not comply with the condition given by
equation (33) because it diverges. The only way to fulfill the condition for everyζ is to
take a closed contourn along the real axis and to surround the pointp̄ = i, but now the function
between the brackets of equation (33) has to be single valued in the upper-half part of the
complex plane. This can only be satisfied ifγ /2 is taken either as an integer or semi-integer.
The semi-integer values ofγ lead to the eigenfunctions found in section 4 and the integer ones
yield to the same eigenfunctions of the 1D H atom equation (23) but without any absolute
value in the variableζ . As can be easily seen, these solutions diverge asζ →−∞, hence we
ignored them because this behaviour is not physical.

Finally, let us compare the influence of the singularities of both potentials on their
respective solutions. For this purpose, we integrate equation (9) around the origin to obtain

dψj (0+)

dx
− dψj (0−)

dx
+

2m

h̄2 lim
b→0

∫ b

−b
dx

(
Ze2

fj (x)
− E

)
ψj(x) = 0. (34)

For the 1D H atom (j = 2) the integral of equation (34) is finite for odd eigenfunctions
ψj since for themψ2(0) = 0, but for even ones such thatψ2(0) 6= 0, it diverges. Nevertheless
equation (34) still may be satisfied if dψ2 (0+)/dx = −dψ2 (0−)/dx = ∞ and then the value
ofE turns out to be irrevelant because the term containing it remains finite; hence a continuum
spectrum is the outcome. This is the case for the above-mentioned continuum-spectrum even
solutions found by Heines and Roberts [16].

For the 1/x potential (j = 1), it is enough to askψ1(0) to remain finite in order to have
a finite value for the integral of equation (34). However, for some solutions the slopes around
the origin are divergent such that dψ1 (0+)/dx = dψ1 (0−)/dx = ∞ andψ1(0) = 0. This
also leads to continuum-spectrum solutions such as the above-mentioned.

In summary, we have exactly obtained the 1D bound eigenenergies and eigenfunctions
for two related potentials; one symmetric (1/|x|) and the other antisymmetric (1/x). For the
former case our results reproduce those of Xianxiet al [5] but in a much simpler way. For
the latter case, which to our knowledge has not been investigated before, we discussed the
classical problem and performed the semiclassical treatment to find tunnelling through the
increasingly infinite and narrow barrier at the origin. Finally, for the 1D 1/x potential we
found a discrete spectrum, discussed the continuum spectrum solutions and gave analytical
expressions of the eigenfunctions in terms of fractional derivatives which in turn can be written
in terms of incompleteγ -functions. This solution is by itself important because it represents
a simple 1D quantum mechanical system with an exact solution solved in momentum space.
We hope that this paper may stimulate further work on the study of quantum problems with
Coulomb-type and related singular potentials.
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